Identification of the Amino Acids 300–600 of IRS-2 as 14-3-3 Binding Region with the Importance of IGF-1/Insulin-Regulated Phosphorylation of Ser-573
نویسندگان
چکیده
Phosphorylation of insulin receptor substrate (IRS)-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.
منابع مشابه
Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance.
S6K1 has emerged as a critical signaling component in the development of insulin resistance through phosphorylation and inhibition of IRS-1 function. This effect can be triggered directly by nutrients such as amino acids or by insulin through a homeostatic negative-feedback loop. However, the role of S6K1 in mediating IRS-1 phosphorylation in a physiological setting of nutrient overload is unre...
متن کاملRoles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting.
The transcription factor, forkhead in rhabdomyosarcoma (FKHR), is phosphorylated at three amino acid residues (Thr-24, Ser-256 and Ser-319) by protein kinase B (PKB)alpha. In the present study, mutagenesis has been used to study the roles of these phosphorylation events in regulating FKHR function in transfected HEK-293 cells. We find that the overexpression of FKHR[S256A] (where Ser-256-->Ala)...
متن کاملEffect of insulin levels on the phosphorylation of specific amino acid residues in IRS-1: implications for burn-induced insulin resistance.
Alterations in the phosphorylation and/or degradation of insulin receptor substrate-1 (IRS-1) produced by burn injury may be responsible, at least in part, for burn-induced insulin resistance. In particular, following burn injury, reductions in glucose uptake by skeletal muscle may be secondary to altered abundance and/or phosphorylation of IRS-1. In this study, we performed in vitro experiment...
متن کاملIdentification of Amino Acids Involve in Indium Binding To Serum Human Apo-Transferrin
Indium is a heavy metal belonging to group IIIa. It is used as a radioimaging and chemotherapeutic agent in diagnosis and also in the treatment of cancers. It is believed that indium may interfere with iron metabolism and reduce cell growth in cancer tissue. The present report was established to study the binding of iron and indium to apo-transferrin (apo-tf) and to identify amino acids involv...
متن کاملInsulin receptor substrate (IRS) proteins IRS-1 and IRS-2 differential signaling in the insulin/insulin-like growth factor-I pathways in fetal brown adipocytes.
In the present study we have investigated the contribution of the insulin receptor substrate proteins (IRS-1 and IRS-2) to the insulin/insulin like growth factor I (IGF-I)-signaling pathways in fetal rat brown adipocytes, a model that expresses both insulin and IGF-I receptors. Insulin/IGF-I rapidly stimulated IRS-1 and IRS-2 tyrosine phosphorylation, their association with p85alpha, and IRS-1-...
متن کامل